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Background and motivation

@ Simulate from target distributions with strong nonlinear dependencies

— Joint posterior of latent variables and parameters in Bayesian

hierarchical models
@ Current methods include:

— Variants of Gibbs sampling
(nonlinear dependencies across the blocks)

— Jointly updating latent variables and parameters
(need to ensure that proposals are properly aligned)

— Pseudo-marginal methods
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Pseudo-marginal methods

o Target marginal posteriors of the parameters directly, by integrating
out the latent variables
@ Relies on ability to produce unbiased, low-variance Monte Carlo
estimate of said posterior
— Sequential Monte Carlo methods
@ Our approach: Combining pseudo-marginal Hamiltonian Monte Carlo

(Lindsten and Doucet, 2016) with Efficient Importance Sampling
(Liesenfeld and Richard, 2003; Richard and Zhang, 2007)
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Hamiltonian Monte Carlo (HMC)

General purpose MCMC method
Energy preserving dynamical system as the proposal mechanism
— Approximated by numerical integrator which preserves the dynamics

Produces close to iid samples

@ The main sampling algorithm in Stan, the popular Bayesian modeling
software
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Pseudo-marginal HMC

@ Directly targeting the marginal posterior p(8]y) o p(0)p(y|0)

o p(y|@) = [ p(y|x,0)p(x|@)dx is approximated numerically, using a set
of random generated numbers u

@ An augmented target distribution corrects for Monte Carlo variation:
#(8,u) o p(8)(y]0, u)p(u)

@ Regular HMC is applied to the augmented target

@ The HMC integrator needs to evaluate V7 (0, u), implemented using
automatic differentiation software

@ To ensure good performance, qu) should be a smooth function
of both u and 6

— Typically not the case for sequential Monte Carlo methods
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Efficient Importance Sampling (EIS)

—

@ Our chosen algorithm for calculating p(y|6, u)

@ EIS chooses importance densities that minimizes the Monte Carlo
variance of importance sampling estimates

@ A suitable density class m(x|a, ) is chosen, where the EIS parameter
a is chosen so MCMC variance is minimized

@ The local minimization problems for a (one for each observation) are

reduced to linear least squares problems, solved iteratively from a
starting value ag

iV n x() 6)p(x()|0 i
o p(y|@,u) = %Zi:l %’ x() ~ m(-|a, 0,u)
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Simulation experiments

@ State space models

(] yt|Xt70 ~ gt(-’Xt,O), t = 1, ey T,
Xt|Xt—17 0 ~ N('|Mt(xt—17 0))012'(Xt—17 0))7 t= 27 ey Tr
110 ~ N1 (6),52(0))

@ Stan is used as a benchmark

Osmundsen, Kleppe, Liesenfeld Pseudo-Marginal HMC with EIS EcoSta 2018 7/12



One-parameter model

° vy ~exp(x/2) €, e ~N(0,1),te(1,2,...,T),
XtN0+77t, ntNN(O,l),t€(172,,T)
@ Simulated observations

0 ‘ CPU time (s) Post. mean Post. std. ESS  ESS/s
HMC-EIS (0 reg) | 16.4 0.026 0.063 631.8 38.4
HMC-EIS (1 reg) | 74.2 0.026 0.063 876.5 11.8
Stan 21 0.026 0.063 319 151.2
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Stochastic volatility model

oy =exp(xt/2) €, € ~N(0,1),t€(1,2,...,T),
Xt =9+ 0xe—1+vne, ne~N(0,1),t€(2,3,...,T),
=15+ 7= m~N(0,1)

@ Dollar/Pound exchange rates

) ‘ CPU time (s) Post. mean Post. std. ESS ESS/s
HMC-EIS (2 reg) | 245 0.976 0.01 469 1.92
Stan 10 0.976 0.01 284 28.6
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Constant elasticity of variance diffusion model

o yr=xt+oye, €e~N(0,1),te(1,2,...,T),
Xt = Xe—1 + Ao — Bxe—1) + 0xx_1V/ D1,
ntNN(O’ 1)7t€ (273a"'7T)v XINN(y150'012)’
@ Short-term interest rates
@ Stan is not converging (limited information in the observations,
o, = 0.0005)
— Compare our results to modified Cholesky Riemann manifold
Hamiltonian Monte Carlo (MCRMHMC) and Particle Gibbs.

« ‘ CPU time (s) Post. mean Post. std. ESS ESS/s
HMC-EIS (1 reg) | 473 0.01 0.009 1000 2.11
MCRMHMC 16200 0.01 0.009 1000 0.06
Particle Gibbs 90 0.01 0.009 456  5.07
Ox ‘ Post. mean Post. std. ESS ESS/s
HMC-EIS (1 reg) | 0.41 0.06 945 1.73
MCRMHMC 0.41 0.06 579 0.04
Particle Gibbs 0.41 0.06 79 0.88
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Conclusion

@ We have combined HMC with EIS
@ Produces stable, effective and accurate results.

@ Competitive computational cost for models with advanced latent
processes.
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Thank you for your attention!
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