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The competitive storage model

The model [Deaton and Laroque, 1992] assumes:

IID shocks (zt) - supply/harvest

Costly storage: β = (1− δ)/(1 + r) < 1

– δ is the commodity depreciation rate and r is the interest rate

Storage is non-negative

A deterministic demand function, given as a function of a price: D(pt)

There exists an inverse demand function P(xt): D (P(xt)) = xt

The price is considered fixed when making storage decisions

Speculators are assumed to hold rational expectations

Let It be the inventory level at time t. The amount of stocks at hand is
then given by xt = (1− δ)It−1 + zt

The optimal storage policy implies pt = max [P(xt), βEtpt+1]
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The competitive storage model, continued

The optimal storage policy implies pt = max [P(xt), βEtpt+1]

In equilibrium, supply must equal demand, leading to the following
price function:

f (x) = max
{
P(x), f̄ (x)

}
, (1)

f̄ (x) = βEf ((1− δ)σ(x) + z) ,

σ(x) = x − D(f (x)).

Following [Oglend and Kleppe, 2017], we assume storage is
non-negative and bounded from above at C ≥ 0:

f (x) = min
{
P(x − C ),max

{
P(x), f̄ (x)

}}
(2)
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Equilibrium prices when storage is completely bounded

f (x) = min
{
P(x − C ),max

{
P(x), f̄ (x)

}}

Expectations E0 are taken with regards to initial period information (arbitrarily set to zero here). The maximized value
function satisfies the Bellman functional equation:

V� xð Þ ¼max
sAΓ

U x�sð Þþ 1
1þr

Z
V� F s; zð Þð Þϕ dzð Þ

� �
; xAX: ð1Þ

The solution defines a rational expectations equilibrium, which can be summarized in a rational expectations price function
f xð Þ. The function is a mapping from stocks to prices ensuring that the value function is maximized and the market clears.

Theorem 1. Under Assumptions 1–3 the value function V� xð Þ solving Eq. (1) exists and is unique. V� xð Þ is continuous, con-
tinuously differentiable, bounded, strictly increasing and strictly concave on X.
The function f xð Þ is the costate variable of the maximized value function: f xð Þ ¼ dV� xð Þ

dx . For any xAX, f xð Þ can be expressed as

f xð Þ ¼min P x�Cð Þ;max f xð Þ; P xð Þ
n on o

;

f xð Þ ¼ β

Z
f 1�δð Þσ xð Þþzð Þϕ dzð Þ;

σ xð Þ ¼ x�D f xð Þð Þ:
The function f xð Þ characterizes the necessary and sufficient conditions for a maximized value function. It is bounded as
P xð Þr f xð ÞrP x�Cð Þ and is continuous and monotonically decreasing in x. The optimal storage policy σ xð Þ is a continuous and
monotonically increasing function on X. In addition, for any x; x0AX with xox0, σ x0ð Þ�σ xð Þox0 �x.

Proof. See Appendix

The existence of the unique maximized value function in the general case when storage does not have to be costly
follows directly from the storage capacity constraint imposing a compact valued collection of feasible storage actions for any
x. Without the capacity constraint, the upper bound on storage is given purely by the stock level x. Without constraining the
storage technology to be sufficiently costly, x will not necessarily be bounded. Whether restricting technology or stocks is
relevant would depend on the market in question.

The intuition behind the equilibrium price expression f xð Þ in Theorem 1 is made clearer if we let xt be time t stocks and
f xtð Þ ¼ pt the time t competitive price. The expression can then be restated as

pt ¼min P xt�Cð Þ;max
1�δ

1þr

� �
Etptþ1; P xtð Þ

� �� �
:

This min/max expression isolates three possible pricing regimes in the market: (1) stock-out pricing (pt ¼ P xtð Þ, σ xtð Þ ¼ 0), (2)

no-arbitrage pricing (pt ¼ 1� δ
1þ r

� 	
Etptþ1; 0oσ xtð ÞoC), and (3) full capacity pricing (pt ¼ P xt�Cð Þ, σ xtð Þ ¼ C). The two first

regimes are standard; the latter regime is due to the capacity constraint. If price at full capacity storage, P xt�Cð Þ, is below

the discounted expected price, 1� δ
1þ r

� 	
Etptþ1; then storing at full capacity is optimal. The equilibrium price will be deter-

mined by the willingness to pay for all stocks in excess of capacity.

Fig. 1. Equilibrium prices when storage is completely bounded.
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Numerical solution

We solve for σ(x) and recover f (x):

fS(x) = P (x − σ(x))

σ(x) ≈


0 if x < x̂∗

s(x) if x̂∗ ≤ x ≤ x̂∗∗

C if x > x̂∗∗
,

Iteratively, using initial values x̂∗ = 0, x̂∗∗ = C , s(x) linear:

x̂∗n+1 = D
(
β
∫
fS(z)φ(z)dz

)
x̂∗∗n+1 = D

(
β
∫
fS((1− δ)C + z)φ(z)dz

)
+ C

Define the grid xg as [x̂∗n+1, x̂
∗∗
n+1]

For each grid point j , find updated s(x) to be the solution in s to

s = x
(j)
g − D

(
β
∫
fS((1− δ)s + z)φ(z)dz

)
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Stochastic trend

Expressing the storage model as a time series model for (observed)
log-prices pt :

pt = log f (xt),

xt = (1− δ)σ(xt−1) + zt , zt ∼ iid N(0, 1),
(3)

Adding a stochastic trend:

pt = kt + log f (xt),

kt = kt−1 + εt , εt ∼ iid N(0, v2),

xt = (1− δ)σ(xt−1) + zt , zt ∼ iid N(0, 1),

(4)

The inverse demand function is set to P(x) = exp(−bx)

Objective: For given price data, estimate the storage model’s structural
parameters θ = (v , δ, b), together with the latent parameters (k and x)
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Implicit stochastic trend

pt = kt + log f (xt),

kt = kt−1 + εt , εt ∼ iid N(0, v2),

xt = (1− δ)σ(xt−1) + zt , zt ∼ iid N(0, 1),

For computational convenience, it is possible to express the stochastic
trend implicitly, as kt−1 = pt−1 − log f (xt−1), and thus

pt = pt−1 + log

(
f (xt)

f (xt−1)

)
+ εt , εt ∼ iid N(0, v2),

xt = (1− δ)σ(xt−1) + zt , zt ∼ iid N(0, 1).
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Particle filter

The joint conditional probability density of pt and xt can be derived
analytically:

p(pt , xt |pt−1, xt−1) ∝ 1

v
exp

[
− 1

2v2

(
pt − pt−1 − log f (xt) + log f (xt−1)

)2
− 1

2
(xt − (1− δ)σ(xt−1))2

]
We estimate the marginal likelihood using the sampling importance
resampling (SIR) particle filter [Gordon et al., 1993]
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Particle marginal Metropolis-Hastings

pt = pt−1 + log

(
f (xt)

f (xt−1)

)
+ εt , εt ∼ iid N(0, v2),

xt = (1− δ)σ(xt−1) + zt , zt ∼ iid N(0, 1).

Priors:
v2 ∼ 0.1/χ2

(10), δ ∼ B(2, 20), b ∼ N (0, 1)

PMMH acceptance probability [Andrieu et al., 2010]:

min

{
1,

p̂(y1:T |θ∗)p(θ∗)

p̂(y1:T |θi−1)p(θi−1)

q(θi−1|θ∗)
q(θ∗|θi−1)

}
(5)

We use a symmetric proposal density q(θi−1) ∼ N(θt−1,Σ), which entails
that Eq. (5) is not dependent on q.

Σ is set adaptively [Haario et al., 2001].
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Application

The estimation methodology is applied to monthly commodity prices

r = 1.051/12 − 1, C = 10

Importance density: qt(xt , xt−1) ∼ N ((1− δ)σ(xt−1), 1).

natgas coffee cotton aluminium

Acc. rate 0.35 0.24 0.35 0.37

v Post. mean 0.097 0.061 0.046 0.045
Post. std. 0.008 0.004 0.003 0.002
ESS 566 604 792 843

δ Post. mean 0.012 0.002 0.001 0.001
Post. std. 0.005 0.001 0.001 0.001
ESS 819 651 998 1015

b Post. mean 0.441 0.386 0.322 0.196
Post. std. 0.266 0.097 0.06 0.068
ESS 580 533 852 781
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