Estimating the competitive storage model with stochastic trend: A particle MCMC approach

Kjartan Kloster Osmundsen¹ Tore Selland Kleppe¹ Atle Oglend² Roman Liesenfeld³

> ¹Department of Mathematics and Physics University of Stavanger, Norway

²Department of Safety, Economics and Planning University of Stavanger, Norway

³Institute of Econometrics and Statistics University of Cologne, Germany

EcoSta 2019 National Chung Hsing University June 25th 2019 The model [Deaton and Laroque, 1992] assumes:

- IID shocks (z_t) supply/harvest
- Costly storage: $eta = (1-\delta)/(1+r) < 1$
 - δ is the commodity depreciation rate and ${\it r}$ is the interest rate
- Storage is non-negative
- A deterministic demand function, given as a function of a price: $D(p_t)$
- There exists an inverse demand function $P(x_t)$: $D(P(x_t)) = x_t$
- The price is considered fixed when making storage decisions
- Speculators are assumed to hold rational expectations

Let I_t be the inventory level at time t. The amount of stocks at hand is then given by $x_t = (1 - \delta)I_{t-1} + z_t$

The optimal storage policy implies $p_t = \max[P(x_t), \beta E_t p_{t+1}]$

The competitive storage model, continued

- The optimal storage policy implies $p_t = \max [P(x_t), \beta E_t p_{t+1}]$
- In equilibrium, supply must equal demand, leading to the following price function:

$$f(x) = \max \{ P(x), \overline{f}(x) \}, \qquad (1)$$

$$\overline{f}(x) = \beta E f \left((1 - \delta) \sigma(x) + z \right), \qquad \sigma(x) = x - D(f(x)).$$

 Following [Oglend and Kleppe, 2017], we assume storage is non-negative and bounded from above at C ≥ 0:

$$f(x) = \min\left\{P(x-C), \max\left\{P(x), \bar{f}(x)\right\}\right\}$$
(2)

Equilibrium prices when storage is completely bounded

$$f(x) = \min \left\{ P(x - C), \max \left\{ P(x), \overline{f}(x) \right\} \right\}$$

Numerical solution

• We solve for $\sigma(x)$ and recover f(x):

$$f_{\mathcal{S}}(x) = P(x - \sigma(x))$$

$$\sigma(x) \approx \begin{cases} \sigma & \text{if } x < x \\ s(x) & \text{if } \hat{x}^* \le x \le \hat{x}^{**} \\ C & \text{if } x > \hat{x}^{**} \end{cases}$$

Iteratively, using initial values $\hat{x}^* = 0$, $\hat{x}^{**} = C$, s(x) linear:

•
$$\hat{x}_{n+1}^* = D\left(\beta \int f_{\mathcal{S}}(z)\phi(z)dz\right)$$

• $\hat{x}_{n+1}^{**} = D\left(\beta \int f_{\mathcal{S}}((1-\delta)C+z)\phi(z)dz\right) + C$

- Define the grid x_g as $[\hat{x}_{n+1}^*, \hat{x}_{n+1}^{**}]$
- For each grid point *j*, find updated s(x) to be the solution in *s* to $s = x_g^{(j)} - D\left(\beta \int f_S((1-\delta)s + z)\phi(z)dz\right)$

Expressing the storage model as a time series model for (observed) log-prices p_t :

$$p_t = \log f(x_t),$$

$$x_t = (1 - \delta)\sigma(x_{t-1}) + z_t, \qquad z_t \sim \text{iid } N(0, 1),$$
(3)

Adding a stochastic trend:

$$p_t = k_t + \log f(x_t),$$

$$k_t = k_{t-1} + \varepsilon_t, \qquad \varepsilon_t \sim \text{iid } N(0, v^2), \qquad (4)$$

$$x_t = (1 - \delta)\sigma(x_{t-1}) + z_t, \qquad z_t \sim \text{iid } N(0, 1),$$

The inverse demand function is set to $P(x) = \exp(-bx)$

Objective: For given price data, estimate the storage model's structural parameters $\theta = (v, \delta, b)$, together with the latent parameters (**k** and **x**)

Implicit stochastic trend

$$\begin{aligned} p_t &= k_t + \log f(x_t), \\ k_t &= k_{t-1} + \varepsilon_t, \\ x_t &= (1-\delta)\sigma(x_{t-1}) + z_t, \end{aligned} \quad \begin{array}{l} \varepsilon_t &\sim \text{iid } N(0, v^2), \\ z_t &\sim \text{iid } N(0, 1), \end{aligned}$$

For computational convenience, it is possible to express the stochastic trend implicitly, as $k_{t-1} = p_{t-1} - \log f(x_{t-1})$, and thus

$$p_t = p_{t-1} + \log\left(\frac{f(x_t)}{f(x_{t-1})}\right) + \epsilon_t, \qquad \epsilon_t \sim \text{iid } N(0, v^2),$$
$$x_t = (1 - \delta)\sigma(x_{t-1}) + z_t, \qquad z_t \sim \text{iid } N(0, 1).$$

The joint conditional probability density of p_t and x_t can be derived analytically:

$$p(p_t, x_t | p_{t-1}, x_{t-1}) \propto rac{1}{v} \exp \left[-rac{1}{2v^2} \left(p_t - p_{t-1} - \log f(x_t) + \log f(x_{t-1})
ight)^2 -rac{1}{2} \left(x_t - (1-\delta)\sigma(x_{t-1})
ight)^2
ight]$$

• We estimate the marginal likelihood using the sampling importance resampling (SIR) particle filter [Gordon et al., 1993]

Particle marginal Metropolis-Hastings

$$p_t = p_{t-1} + \log\left(\frac{f(x_t)}{f(x_{t-1})}\right) + \epsilon_t, \qquad \epsilon_t \sim \text{iid } N(0, v^2),$$
$$x_t = (1 - \delta)\sigma(x_{t-1}) + z_t, \qquad z_t \sim \text{iid } N(0, 1).$$

Priors:
$$v^2 \sim 0.1/\chi^2_{(10)}, \ \delta \sim \mathcal{B}(2,20), \ b \sim \mathcal{N}(0,1)$$

PMMH acceptance probability [Andrieu et al., 2010]:

$$\min\left\{1, \frac{\hat{\rho}(y_{1:T}|\boldsymbol{\theta}_*)\rho(\boldsymbol{\theta}_*)}{\hat{\rho}(y_{1:T}|\boldsymbol{\theta}_{i-1})\rho(\boldsymbol{\theta}_{i-1})} \frac{q(\boldsymbol{\theta}_{i-1}|\boldsymbol{\theta}_*)}{q(\boldsymbol{\theta}_*|\boldsymbol{\theta}_{i-1})}\right\}$$
(5)

We use a symmetric proposal density $q(\theta_{i-1}) \sim N(\theta_{t-1}, \Sigma)$, which entails that Eq. (5) is not dependent on q.

 Σ is set adaptively [Haario et al., 2001].

Application

- The estimation methodology is applied to monthly commodity prices • $r = 1.05^{1/12} - 1$, C = 10
- Importance density: $q_t(x_t, x_{t-1}) \sim N((1-\delta)\sigma(x_{t-1}), 1)$.

		natgas	coffee	cotton	aluminium
	Acc. rate	0.35	0.24	0.35	0.37
v	Post. mean	0.097	0.061	0.046	0.045
	Post. std.	0.008	0.004	0.003	0.002
	ESS	566	604	792	843
δ	Post. mean	0.012	0.002	0.001	0.001
	Post. std.	0.005	0.001	0.001	0.001
	ESS	819	651	998	1015
b	Post. mean	0.441	0.386	0.322	0.196
	Post. std.	0.266	0.097	0.06	0.068
	ESS	580	533	852	781

Cotton

Aluminium

Cotton

Aluminium

Bibliography

Andrieu, C., Doucet, A., and Holenstein, R. (2010). Particle markov chain monte carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(3):269–342.

Deaton, A. and Laroque, G. (1992). On the behaviour of commodity prices. *The review of economic studies*, 59(1):1–23.

Gordon, N. J., Salmond, D. J., and Smith, A. F. (1993).
 Novel approach to nonlinear/non-Gaussian Bayesian state estimation.
 In *IEE Proceedings F (Radar and Signal Processing)*, volume 140, pages 107–113. IET.

Haario, H., Saksman, E., and Tamminen, J. (2001). An adaptive Metropolis algorithm. Bernoulli, 7(2):223–242.

Oglend, A. and Kleppe, T. S. (2017).

On the behavior of commodity prices when speculative storage is bounded. *Journal of Economic Dynamics and Control*, 75:52–69.