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Markov chain

Consider a finite number of states: S = {s1, s2, s3}.
Next, let a transition matrix P describe how likely it is to move
between the different states:

P =

p11 p12 p13
p21 p22 p23
p31 p32 p33



A Markov chain is memoryless

– Given the present, the future does not depend on the past.
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Markov chain, equilibrium distribution

For a Markov chain {X1,X2, . . .Xn} with transition matrix P:

Xt ∼ πT ⇒ Xt+1 ∼ πT
P.

limn→∞ π(1)
T
P

n → π∗

– π∗ is the equilibrium distribution of the Markov chain.
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Monte Carlo

Suppose you are able to simulate X1,X2, . . . ,Xn, which are all
independent and identically distributed (i.i.d.).

You wish to calculate the expectation µ = E[X ]

If exact calculation is infeasible, we can use a Monte Carlo estimate:

µ̂n =
1

n

n∑
i=1

Xi

The expectation is approximated by the empirical mean of
independent samples (law of large numbers)

The statistical accuracy is inversely proportional to the square root of
the sample size.

– Increasing the sample size by a factor of 100 reduces the estimation
error by a factor of 10.
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Markov chain Monte Carlo (MCMC)

Not able to generate i.i.d. samples from the desired distribution.

– Construct a Markov chain that has the target distribution as its
equilibrium distribution.

Simulate (correlated) state values X̃1, X̃2, . . . , X̃n from the Markov
chain.

Apply standard Monte Carlo to the Markov chain output:

µ̂n =
1

n

n∑
i=1

X̃i
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MCMC example, discrete distribution

We use the Markov chain to model the weather:
S = {s1 = rainy, s2 = sunny, s3 = cloudy}.

P(rain) ≈ The proportion of simulated time periods spent in s1.

As we have seen, this simple Markov chain quickly reaches its
equilibrium distribution. However, Monte Carlo error is still present.

0 2000 4000 6000 8000 10000

0.
25

0.
30

0.
35

0.
40

P(rain)

t

6 / 20



Markov chain, continuous distribution

Three different runs of the same Markov chain, started with different
initial values.
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When has the Markov chain reached equilibrium?

The chain must be run long enough so that the result is independent
of the starting state.

– May be possible to derive an upper bound of iterations needed.
– Employ various convergence diagnostics on the simulation output.

A popular diagnostic is to compare the within-chain variances to the
variance of all the chains mixed together.

– At convergence, these variances should be (close to) identical.

Diagnostics can identify lack of convergence, but they do not prove
convergence.
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Perfect simulation

In 1996, Propp and Wilson showed how MCMC algorithms can be
modified so that they deliver exact draws from the Markov chains’
equilibrium distribution.

This type of sampling is referred to as perfect simulation.

Perfect sampling determines automatically how long the Markov chain
must run to reach the exact equilibrium distribution.

– Ensures unbiased estimates.
– Must still account for Monte Carlo error.
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Coupling from the past (CFTP)

The algorithm of Propp and Wilson is called Coupling from the past.

Their simple, yet revolutionary, idea is to run the Markov chain from
the past instead of into the future.

Into the future: X0 , X1 ,X2, . . . ,Xn−2,Xn−1,Xn

From the past: X−n,X−n+1,X−n+2, . . . ,X2 ,X1 ,X0

At first glance, this is simply a re-labelling of the Markov chain.

– How is it helpful?
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Update function

Instead of describing a Markov chain with a transition matrix, we can
use an update function.

– Xt+1 = φ(Xt , εt+1)

Letting the distribution of all εt be independent standard uniform, our
three-state example get the following update function:.

P =

p11 p12 p13
p21 p22 p23
p31 p32 p33

 φ(si , ε) =


1, for ε ∈ [0, pi1)

2, for ε ∈ [pi1, pi1 + pi2)

3, for ε ∈ [pi1 + pi2, 1].

Unlike the transition matrix, the update function explicitly describes
how the next state depends on the simulated random variable.
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Into the future vs. from the past

Into the future: X0 , X1 ,X2, . . . ,Xn−2,Xn−1,Xn

From the past: X−n,X−n+1,X−n+2, . . . ,X−2 ,X−1 ,X0

Into the future:
(Xn|X0 = x) = φ(φ(. . .φ(φ(x , ε1), ε2), . . . εn−1), εn)

From the past:
(X0|X−n = x) = φ(φ(. . .φ(φ(x , ε−n+1), ε−n+2), . . . ε−1), ε0)

The sequences have identical distribution, given that εt is i.i.d., which
typically is the case.

This means that the limits as n→∞ also have the same distribution:

– limn→∞(Xn|X0 = x) ∼ limn→∞(X0|X−n = x)
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Why CFTP works

The limit is impossible to compute when simulating into the future.
Why should it be easier to calculate when simulating from the past?

A simple example shows why. Assume φ(Xt , εt+1) = εt+1.

– With the standard i.i.d assumption for εt , t = 1, 2, . . ., it is clear this
Markov chain forms an i.i.d. sequence.

Into the future:

– X0, ε1, ε2, . . . , εn
– limn→∞(Xn|X0 = x) ∼ ε0

From the past:

– X−n, ε−n+1, ε−n+2, . . . , ε0
– limn→∞(X0|X−n = x) = ε0
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CFTP algorithm

Given certain conditions, it can be shown that there exists a finite
stopping time T such that the distribution of (X0|X−T = x) is
exactly the equilibrium distribution of the Markov chain.

The algorithm start by defining a sequence of ”starting times”.

– Typically {−1,−2,−4,−8,−16, . . . }.

The goal of the algorithm is to find a starting time −T , where
multiple chains with different initial states end up in the same state at
t = 0.
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Coupling from the past (CFTP)

φ(s1, ε0) = s1

φ(s2, ε0) = s2

φ(s3, ε0) = s1

φ(s1, ε−1) = s2

φ(s2, ε−1) = s3

φ(s3, ε−1) = s2
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Coupling from the past (CFTP)

φ(s1, ε−2) = s2

φ(s2, ε−2) = s1

φ(s3, ε−2) = s3

φ(s1, ε−3) = s2

φ(s2, ε−3) = s3

φ(s3, ε−3) = s3
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CFTP extension - Sandwiching

For the CFTP algorithm to be of practical use, it needs to work in
cases where the state-space S of the Markov chain is very large.
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CFTP extensions

Read-once CFTP (Wilson)

– Requires less computer memory, as it does not need to store all the
random variables εt .

Fill’s algorithm

– Makes it possible to abandon chains that runs too long, without
introducing sampling bias.

Small-set CFTP (Green & Murdoch)

– Can be applied to continuous state-spaces.
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Final remarks

Perfect sampling determines automatically how long the Markov chain
must run to reach the exact equilibrium distribution.

The most successful applications of perfect sampling involves large,
discrete state-spaces.

Unlike standard MCMC, there is no universal method for perfect
sampling that is suitable for all Markov chains.
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