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Objective
Simulate from target distributions
with strong nonlinear dependencies,
for which standard Markov chain
Monte Carlo (MCMC) methods are
often inadequate.

Models and observations
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variance diffusion model
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Results
The following table shows the Effective Sample Size per second for each model,
as an average of each parameter in θ:

SV model Gamma model CEV model
HMC-EIS 1.8 1.3 1.9
Stan 30 1.8 0

Conclusion
Hamiltonian Monte Carlo with Efficient Importance sampling produces stable
and accurate results. The algorithm is able to produce near perfect samples, and
the computational cost is competitive for the more advanced models.

Method
Our approach is to combine
pseudo-marginal Hamiltonian
Monte Carlo (HMC) (Lindsten and
Doucet, 2016) with Efficient
Importance Sampling (EIS) (Richard
and Zhang, 2007).

HMC offers the possibility of
producing close to iid samples by
using the dynamics of a synthetic
Hamiltonian (i.e. energy preserving)
dynamical system as the proposal
mechanism.

Pseudo-marginal HMC substitutes
p(y|θ) for an unbiased Monte Carlo
estimate: Eu(p̂(y|θ,u)) = p(y|θ) ∀ θ,
where u is a set of random generated
numbers. Here calculated using EIS.

To correct for Monte Carlo variation
in p̂(y|θ,u), the target distribution
must be augmented with u, resulting
in the following Hamiltonian:

H = − log p(θ)− log p̂(y|θ,u) +
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Stan, a Bayesian modeling software
based on HMC, is used as a
benchmark for the performance of
our method.

Introduction
This research focuses on the joint
posterior of latent variables and
parameters in Bayesian hierarchical
models, where such nonlinear
dependencies can arise.
More specifically, models on the
following form:

yt|xt,θ ∼ gt(·|xt,θ),

xt|xt−1,θ ∼ N (·|µt(xt−1,θ), σ2
t (xt−1,θ)),

x1|θ ∼ N (·|µ1(θ), σ2
1(θ)).

Pseudo-marginal methods target the
marginal posteriors of the parameters
directly, by Monte Carlo-integrating out
the latent variables.
This approach has the potential to
produce efficient exploration of the
parameters, but relies on the ability to
produce an unbiased, low-variance
Monte Carlo estimate of the said
posterior.


